Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
1.
Mol Biol Rep ; 51(1): 581, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668759

RESUMO

BACKGROUND: Homeodomain-leucine ZIPper (HD-ZIP) transcription factors play crucial roles in plant growth, development, and stress responses. The HD-ZIP family is categorised into four groups (HD-ZIP I-IV). While extensive genome-wide studies have been conducted on the HD-ZIP I, III, and IV subfamily in Nicotiana tabacum (tobacco), comprehensive reports on the HD-ZIP II subfamily genes are limited. METHODS: Bioinformatics resources and tools were utilised to analyse molecular characteristics, phylogenetic homology, and protein interactions. Expression pattern analyses in various tissues and the relative expression of NtHD-ZIP II genes under drought and GA3 treatment were assessed by qRT-PCR. RESULTS: In this study, 24 HD-ZIP II members were systematically identified and categorised into seven independent clades through phylogenetic analysis involving tobacco and other plant species. We found that 19 NtHD-ZIP II genes exhibited tissue-specific expression. The transcripts of NtHD-ZIPII3, 4, 14, 23, 24 were notably induced under the drought treatments, while those of NtHD-ZIPII7, 11, 12, 20 were suppressed. Furthermore, NtHD-ZIPII15 transcripts decreased following GA3 treatment, whereas the transcripts of NtHD-ZIPII7, 8, 11, 12 were induced after GA3 treatment. Notably, an increase in trichomes was observed in tobacco leaves treated with GA3 and subjected to drought. CONCLUSIONS: The expression levels of some HD-ZIP II genes were altered, and an increase in glandular trichomes was induced under GA3 and drought treatments in tobacco. Overall, our findings provide insights into the expression patterns of NtHD-ZIP II genes and will facilitate their functional characterisation in future studies.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Tabaco , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Tabaco/genética , Tabaco/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Giberelinas/metabolismo , Zíper de Leucina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica/métodos
2.
BMC Genomics ; 25(1): 354, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594645

RESUMO

The homeodomain-leucine zipper (HD-Zip) gene family plays a pivotal role in plant development and stress responses. Nevertheless, a comprehensive characterization of the HD-Zip gene family in kiwifruit has been lacking. In this study, we have systematically identified 70 HD-Zip genes in the Actinidia chinensis (Ac) genome and 55 in the Actinidia eriantha (Ae) genome. These genes have been categorized into four subfamilies (HD-Zip I, II, III, and IV) through rigorous phylogenetic analysis. Analysis of synteny patterns and selection pressures has provided insights into how whole-genome duplication (WGD) or segmental may have contributed to the divergence in gene numbers between these two kiwifruit species, with duplicated gene pairs undergoing purifying selection. Furthermore, our study has unveiled tissue-specific expression patterns among kiwifruit HD-Zip genes, with some genes identified as key regulators of kiwifruit responses to bacterial canker disease and postharvest processes. These findings not only offer valuable insights into the evolutionary and functional characteristics of kiwifruit HD-Zips but also shed light on their potential roles in plant growth and development.


Assuntos
Actinidia , Proteínas de Homeodomínio , Proteínas de Homeodomínio/genética , Genoma de Planta , Filogenia , Actinidia/genética , Zíper de Leucina/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Perfilação da Expressão Gênica
3.
BMC Genomics ; 25(1): 182, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360569

RESUMO

BACKGROUND: Homeodomain-leucine zipper (HD-Zip) transcription factors are plant-specific and play important roles in plant defense against environmental stresses. Identification and functional studies have been carried out in model plants such as rice, Arabidopsis thaliana, and poplar, but comprehensive analysis on the HD-Zip family of Salix suchowensis have not been reported. RESULTS: A total of 55 HD-Zip genes were identified in the willow genome, unevenly distributed on 18 chromosomes except for chromosome 19. And segmental duplication events containing SsHD-Zip were detected on all chromosomes except chromosomes 13 and 19. The SsHD-Zip were classified into 4 subfamilies subfamilies (I-IV) according to the evolutionary analysis, and members of each subfamily shared similar domain structure and gene structure. The combination of GO annotation and promoter analysis showed that SsHD-Zip genes responded to multiple abiotic stresses. Furthermore, the results of qPCR analysis showed that the SsHD-Zip I gene exhibited different degrees of expression under salt stress, PEG treatment and heat treatment. Moreover, there was a synergistic effect between SsHD-Zip I genes under stress conditions based on coregulatory networks analysis. CONCLUSIONS: In this study, HD-Zip transcription factors were systematically identified and analyzed at the whole genome level. These results preliminarily clarified the structural characteristics and related functions of willow HD-Zip family members, and it was found that SsHox34, SsHox36 and SsHox51 genes were significantly involved in the response to various stresses. Together, these findings laid the foundation for further research on the resistance functions of willow HD-Zip genes.


Assuntos
Arabidopsis , Salix , Zíper de Leucina/genética , Salix/genética , Genoma de Planta , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/química , Filogenia
4.
J Mol Evol ; 91(5): 581-597, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37351602

RESUMO

The HD superfamily has been studied in detail for several decades. The plant-specific HD-Zip I subfamily attracts the most attention because of its involvement in plant development and stress responses. In this review, we provide a comprehensive insight into the evolutionary events responsible for the functional redundancy and diversification of the HD-Zip I genes in regulating various biological processes. We summarized the evolutionary history of the HD-Zip family, highlighting the important role of WGDs in its expansion and divergence of retained duplicates in the genome. To determine the relationship between the evolutionary origin and functional conservation of HD-Zip I in different species, we performed a phylogenetic analysis, compared their expression profiles in different tissues and under stress and traced the role of orthologs and paralogs in regulating developmental processes. We found that HD-Zip I from different species have similar gene structures with a highly conserved HD and Zip, bind to the same DNA sequences and are involved in similar biological processes. However, they exhibit a functional diversity, which is manifested in altered expression patterns. Some of them are involved in the regulation of species-specific leaf morphology and phenotypes. Here, we discuss the role of changes in functional domains involved in DNA binding and protein interaction of HD-Zip I and in cis-regulated regions of its target genes in promoting adaptive innovations through the formation of de novo regulatory systems. Understanding the role of the HD-Zip I subfamily in organism-environment interactions remains a challenge for evolutionary developmental biology (evo-devo).


Assuntos
Mapas de Interação de Proteínas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Zíper de Leucina/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética
5.
Proc Natl Acad Sci U S A ; 120(15): e2216632120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011193

RESUMO

Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Meristema , Brassinosteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina/genética , Citocininas/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas
6.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902431

RESUMO

Understanding the molecular mechanisms underlying somatic embryogenesis is essential for resolving the problems related to the long duration of the process and a low rate of somatic embryo induction in oil palm tissue culture. In this study, we conducted genome-wide identification of the oil palm homeodomain leucine zipper (EgHD-ZIP) family, which is one of the plant-specific transcription factors reported to be involved in embryogenesis. EgHD-ZIP proteins can be divided into four subfamilies, which have similarities in gene structure and protein-conserved motifs within a group. In silico expression analysis showed that the expression of EgHD-ZIP gene members in the EgHD-ZIP I and II families, as well as most members in the EgHD-ZIP IV family, were up-regulated during the zygotic and somatic embryo developmental stages. In contrast, the expression of EgHD-ZIP gene members in the EgHD-ZIP III family was down-regulated during zygotic embryo development. Moreover, the expression of EgHD-ZIP IV genes was validated in the oil palm callus and at the somatic embryo stages (globular, torpedo, and cotyledon). The results revealed that EgHD-ZIP IV genes were up-regulated at the late stages of somatic embryogenesis (torpedo and cotyledon). While BABY BOOM (BBM) gene was up-regulated at the early stage of somatic embryogenesis (globular). In addition, the Yeast-two hybrid assay revealed the direct binding between all members of the oil palm HD-ZIP IV subfamily (EgROC2, EgROC3, EgROC5, EgROC8, and EgBBM). Our findings suggested that the EgHD-ZIP IV subfamily and EgBBM work together to regulate somatic embryogenesis in oil palms. This process is important because it is widely used in plant biotechnology to produce large quantities of genetically identical plants, which can be used for oil palm tissue culture improvement.


Assuntos
Zíper de Leucina , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Zíper de Leucina/genética , Proteínas de Homeodomínio/genética , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Embrionário , Proteínas de Plantas/genética , Filogenia
7.
Plant Genome ; 16(1): e20295, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606521

RESUMO

Zanthoxylum armatum is an important cash crop for medicinal and food purposes in Asia. However, its stems and leaves are covered with a large number of prickles, which cause many problems in the production process. The homeodomain leucine zipper (HD-ZIP) gene family is a class of transcription factors unique to plants that play an important role in biological processes such as morphogenesis, signal transduction, and secondary metabolite synthesis. However, little is known about HD-ZIP gene information that may be involved in prickle development of Z. armatum. Here, we identified 76 ZaHDZ genes from the Z. armatum genome and classified them into four subfamilies (I-IV) based on phylogenetic analysis, a classification further supported by gene structure and conserved motif analysis. Seventy-six ZaHDZ genes were unevenly distributed on chromosomes. Evolutionary analysis revealed that the expansion of ZaHDZ genes mainly were due to whole-genome duplication (WGD) or segmental duplication, and they experienced strong purifying selection pressure in the process of evolution. A total of 47 cis-elements were identified in the promoter region of ZaHDZ genes. Quantitative real-time polymerase chain reaction analysis was performed on subfamily IV ZaHDZ gene expression levels in five tissues and under four hormone treatments. Finally, ZaHDZ16 was predicted to be the candidate gene most likely to be involved in prickle development of Z. armatum. These results contribute to a better understanding of the characteristics of HD-ZIP gene family and lay a foundation for further study on the function of genes related to prickle development of Z. armatum.


Assuntos
Zanthoxylum , Zanthoxylum/genética , Zanthoxylum/metabolismo , Genoma de Planta , Filogenia , Fatores de Transcrição/genética , Zíper de Leucina/genética
8.
FEBS Lett ; 597(7): 917-932, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36480418

RESUMO

The cyclic AMP response element binding protein (CREB) contains a basic leucine zipper motif (bZIP) that forms a coiled coil structure upon dimerization and specific DNA binding. Although this state is well characterized, key features of CREB bZIP binding and folding are not well understood. We used single-molecule Förster resonance energy transfer (smFRET) to probe conformations of CREB bZIP subdomains. We found differential folding of the basic region and leucine zipper in response to different binding partners; a strong and previously unreported DNA-independent dimerization affinity; folding upon binding to nonspecific DNA; and evidence of long-range interdomain interactions in full-length CREB that modulate DNA binding. These studies provide new insights into DNA binding and dimerization and have implications for CREB function.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica , Zíper de Leucina/genética , DNA/metabolismo
9.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361676

RESUMO

Transcription factors members of the basic leucine zipper (bZIP) class play important roles in the regulation of genes and functions in testicular Leydig cells. Many of these factors, such as cAMP responsive element binding protein 1 (CREB1) and CCAAT enhancer binding protein beta (CEBPB), are regulated by the cAMP/protein kinase A (PKA) pathway, the main signaling pathway activated following the activation of the luteinizing hormone/choriogonadotropin membrane receptor LHCGR by the - hormone LH. Others, such as X-box binding protein 1 (XBP1) and members of the cAMP responsive element binding protein 3 (CREB3)-like superfamily, are implicated in the endoplasmic reticulum stress by regulating the unfolded protein response. In this review, the influences of bZIP transcription factors, including CREB1, CEBPB and activator protein 1 (AP-1) family members, on the regulation of genes important for cell proliferation, steroidogenesis and Leydig cell communication will be covered. In addition, unresolved questions regarding the mechanisms of actions of bZIP members in gene regulation will be identified.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Células Intersticiais do Testículo , Masculino , Humanos , Células Intersticiais do Testículo/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Zíper de Leucina/genética
10.
Physiol Plant ; 174(5): e13789, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36183327

RESUMO

Homeodomain-leucine zipper (HD-Zip) transcription factors are involved in various biological processes of plant growth, development, and abiotic stress response. However, how they regulate heat stress (HS) response remains largely unclear in plants. In this study, a total of 83 RsHD-Zip genes were firstly identified from the genome of Raphanus sativus. RNA-Seq, RT-qPCR and promoter activity assays revealed that RsHDZ17 from HD-Zip Class I was highly expressed under heat, salt, and Cd stresses. RsHDZ17 is a nuclear protein with transcriptional activity at the C-terminus. Ectopic overexpression (OE) of RsHDZ17 in Arabidopsis thaliana enhanced the HS tolerance by improving the survival rate, photosynthesis capacity, and scavenging for reactive oxygen species (ROS). In addition, transient OE of RsHDZ17 in radish cotyledons impeded cell injury and augmented ROS scavenging under HS. Moreover, yeast one-hybrid, dual-luciferase assay, and electrophoretic mobility shift assay revealed that RsHDZ17 could bind to the promoter of HSFA1e. Collectively, these pieces of evidence demonstrate that RsHDZ17 could play a positive role in thermotolerance, partially through up-regulation of the expression of HSFA1e in plants. These results provide novel insights into the role of HD-Zips in radish and facilitate genetical engineering and development of heat-tolerant radish in breeding programs.


Assuntos
Arabidopsis , Raphanus , Termotolerância , Raphanus/genética , Raphanus/metabolismo , Zíper de Leucina/genética , Termotolerância/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Cádmio/metabolismo , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Plant Biol (Stuttg) ; 24(5): 874-886, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35491433

RESUMO

Homeodomain-leucine zipper (HD-Zip) proteins are plant-specific transcription factors that play important roles in different biological processes, especially leaf development. However, no studies to date have identified the HD-Zip genes in Liriodendron chinense nor characterized their functions. We identified the HD-Zip genes in L. chinense by analysing the phylogeny, chromosome location, structure, conserved motif, cis-regulatory elements, synteny, post-transcriptional regulation and expression patterns of these genes during leaf development. A total of 36 LcHD-Zip genes were identified and divided into four subfamilies (HD-Zip I to IV). Synteny analysis revealed that segmental duplication was the main force driving the expansion of LcHD-Zip genes. These 36 LcHD-Zip genes exhibited 11 different expression patterns. Pattern 1, 2, 3, 4, 6, 7, 8 and 9 genes may play important roles in leaf development, such as leaf initiation, leaf polarity establishment, leaf shape development, phytohormone-mediated leaf growth and leaf epidermal structure formation. Four HD-Zip III genes were targeted by microRNAs (miRNAs), and the miR165/166a-HD-Zip regulatory module formed regulated leaf initiation and leaf polarity establishment. Overall, LcHD-Zip genes play key roles in leaf development of L. chinense. This work provides a foundation for the functional verification of HD-Zip genes identified in this study.


Assuntos
Liriodendron , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Zíper de Leucina/genética , Liriodendron/genética , Liriodendron/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
12.
BMC Microbiol ; 22(1): 94, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35395730

RESUMO

BACKGROUND: HIV-1 pol, which encodes enzymes required for virus replication, is initially translated as a Gag-Pol fusion protein. Gag-Pol is incorporated into virions via interactions with Gag precursor Pr55gag. Protease (PR) embedded in Gag-Pol mediates the proteolytic processing of both Pr55gag and Gag-Pol during or soon after virus particle release from cells. Since efficient Gag-Pol viral incorporation depends on interaction with Pr55gag via its N-terminal Gag domain, the prevention of premature Gag cleavage may alleviate Gag-Pol packaging deficiencies associated with cleavage enhancement from PR. RESULTS: We engineered PR cleavage-blocking Gag mutations with the potential to significantly reduce Gag processing efficiency. Such mutations may mitigate the negative effects of enhanced PR activation on virus assembly and Gag-Pol packaging due to an RT dimerization enhancer or leucine zipper dimerization motif. When co-expressed with Pr55gag, we noted that enhanced PR activation resulted in reduced Gag-Pol cis or trans incorporation into Pr55gag particles, regardless of whether or not Gag cleavage sites within Gag-Pol were blocked. CONCLUSIONS: Our data suggest that the amount of HIV-1 Gag-Pol or Pol viral incorporation is largely dependent on virus particle production, and that cleavage blocking in the Gag-Pol N-terminal Gag domain does not exert significant impacts on Pol packaging.


Assuntos
HIV-1 , Proteínas de Fusão gag-pol/genética , Proteínas de Fusão gag-pol/metabolismo , HIV-1/genética , Zíper de Leucina/genética , Vírion , Montagem de Vírus
13.
Genes (Basel) ; 13(4)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35456413

RESUMO

The basic leucine zipper (bZIP) is a widely found transcription factor family that plays regulatory roles in a variety of cellular processes including cell growth and development and various stress responses. However, the bZIP gene family has not been well studied at a genome-wide scale in Fusarium graminearum (Fg), a potent pathogen of cereal grains. In the present study, we conducted a genome-wide identification, characterization, and expression profiling of 22 F. graminearum bZIP (FgbZIP) genes at different developmental stages and under various abiotic stresses. All identified FgbZIPs were categorized into nine groups based on their sequence similarity and phylogenetic tree analysis. Furthermore, the gene structure analysis, conserved motif analysis, chromosomal localization, protein network studies, and synteny analysis were performed. The symmetry of the exon and intron varied with the phylogenetic groups. The post-translational modifications (PTMs) analysis also predicted several phosphorylation sites in FgbZIPs, indicating their functional diversity in cellular processes. The evolutionary study identified many orthogroups among eight species and also predicted several gene duplication events in F. graminearum. The protein modeling indicated the presence of a higher number of α-helices and random coils in their structures. The expression patterns of FgbZIP genes showed that 5 FgbZIP genes, including FgbZIP_1.1, FgbZIP_1.3, FgbZIP_2.6 FgbZIP_3.1 and FgbZIP_4.3, had high expression at different growth and conidiogenesis stages. Similarly, eight genes including FgbZIP_1.1, FgbZIP_1.6, FgbZIP_2.3, FgbZIP_2.4, FgbZIP_4.1, FgbZIP_4.2, FgbZIP_4.3 and FgbZIP_4.6 demonstrated their putative role in response to various abiotic stresses. In summary, these results provided basic information regarding FgbZIPs which are helpful for further functional analysis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Cromossomos de Plantas/metabolismo , Fusarium , Perfilação da Expressão Gênica , Zíper de Leucina/genética , Família Multigênica , Filogenia
14.
Mol Biol Rep ; 49(5): 3569-3581, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35118569

RESUMO

BACKGROUND: Homeodomain leucine zipper (HD-ZIP) transcription factors play roles in regulating plant development and responses to abiotic stresses; however, how HD-ZIP genes in Medicago truncatula are involved in abiotic stress response remains elusive. METHODS AND RESULTS: The HD-ZIP I genes in Medicago truncatula were identified and characterized, and their expression patterns in different tissues and under different abiotic stresses were analyzed. A total of 15 Medicago truncatula HD-ZIP I genes were identified and a phylogenetic analysis of HD-ZIP I proteins in Arabidopsis thaliana and Medicago truncatula was conducted. Fifteen HD-ZIP I genes showed diverse tissue preferences. Among them, expressions of MtHB22 and MtHB51 were specially detected in vegetative buds. In addition, they responded to various abiotic stresses, including salinity and osmotic stress and abscisic acid (ABA). For instance, MtHB7 and MtHB12 expression levels were found to be positively associated with salt, osmotic stress and ABA in both shoots and roots, while MtHB13 and MtHB23 were negatively associated with these stresses in Medicago truncatula. CONCLUSION: The HD-ZIP I genes in Medicago truncatula are evolutionarily conserved, but also exhibit gene duplication and gene loss events. Differential expression analysis of Medicago truncatula HD-ZIP I genes indicated their crucial roles in abiotic stress responses. Our genome-wide analysis of the HD-ZIP I transcription factor family in Medicago truncatula provided a valuable reference for further research.


Assuntos
Arabidopsis , Medicago truncatula , Ácido Abscísico/farmacologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Sci Rep ; 11(1): 19462, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593869

RESUMO

Glucocorticoids (GCs) are the main treatment of relapse in multiple sclerosis (MS). Decreased sensitivity to GCs in MS patients has been associated with lack of the suppressive effect of GCs on inflammatory molecules as well as increased resistance to apoptosis. We investigated GC-sensitivity by measuring the effect of intravenous methylprednisolone (IVMP) treatment on transactivation of anti-inflammatory and apoptotic genes (GILZ, MCL-1 and NOXA respectively), in accordance to clinical outcome. Thirty nine MS patients were studied: 15 with clinically isolated syndrome (CIS), 12 with relapsing remitting (RRMS) and 12 with secondary progressive (SPMS) under relapse. Patients underwent treatment with IVMP for 5 days. Blood was drawn before IVMP treatment on day 1 and 1 h after IVMP treatment on days 1 and 5. GIlZ, MCL-1 and NOXA were determined by qPCR. The Expanded Disability Status was evaluated and patients were divided according to their clinical response to IVMP. GILZ and MCL-1 gene expression were significantly higher following first IVMP treatment in responders, compared to non-responders. Furthermore, serum basal cortisol and 1,25-OH Vitamin D levels were significantly higher in clinical-responders as compared to non-clinical responders. Our findings suggest that the differential GILZ and MCL-1 gene expression between clinical-responders and non-clinical responders may implicate the importance of GILZ and MCL-1 as possible markers for predicting glucocorticoid sensitivity and response to GC-therapy in MS patients following first IVMP injection.


Assuntos
Anti-Inflamatórios/uso terapêutico , Metilprednisolona/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Administração Intravenosa , Adulto , Anti-Inflamatórios/administração & dosagem , Calcitriol/sangue , Avaliação da Deficiência , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Hidrocortisona/sangue , Zíper de Leucina/genética , Masculino , Metilprednisolona/administração & dosagem , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Recidiva
16.
Sci Rep ; 11(1): 20746, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671092

RESUMO

Homeodomain-leucine zippers (HD-Zip) are plant-specific transcription factors that participate in different plant development processes and differentially regulate metabolic processes. LoHDZ2 is an HD-ZipII subfamily transcription factor gene that we identified from a transcriptomic analysis of Larix olgensis. To understand its function, we built a LoHDZ2 expression vector and then inserted it into tobacco by genetic transformation. Transgenic plants were identified at the DNA and RNA levels. Phenotypic index analysis of transgenic tobacco showed dwarfed growth with larger leaves and earlier flowering than the wild type. LoHDZ2 was expressed differently after hormone treatment with IAA, MeJA and 2,4-D. The results suggested that LoHDZ2 may respond to hormones and be involved in regulating growth and metabolism. These results helped us better understand the function of LoHDZ2 and provided a candidate gene for Larix olgensis molecular breeding.


Assuntos
Proteínas de Homeodomínio/genética , Larix/genética , Zíper de Leucina/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transformação Genética/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética
17.
Genes (Basel) ; 12(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440430

RESUMO

Exploring the molecular foundation of the gene-regulatory systems underlying agronomic parameters or/and plant responses to both abiotic and biotic stresses is crucial for crop improvement. Thus, transcription factors, which alone or in combination directly regulated the targeted gene expression levels, are appropriate players for enlightening agronomic parameters through genetic engineering. In this regard, homeodomain leucine zipper (HD-ZIP) genes family concerned with enlightening plant growth and tolerance to environmental stresses are considered key players for crop improvement. This gene family containing HD and LZ domain belongs to the homeobox superfamily. It is further classified into four subfamilies, namely HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV. The first HD domain-containing gene was discovered in maize cells almost three decades ago. Since then, with advanced technologies, these genes were functionally characterized for their distinct roles in overall plant growth and development under adverse environmental conditions. This review summarized the different functions of HD-ZIP genes in plant growth and physiological-related activities from germination to fruit development. Additionally, the HD-ZIP genes also respond to various abiotic and biotic environmental stimuli by regulating defense response of plants. This review, therefore, highlighted the various significant aspects of this important gene family based on the recent findings. The practical application of HD-ZIP biomolecules in developing bioengineered plants will not only mitigate the negative effects of environmental stresses but also increase the overall production of crop plants.


Assuntos
Zíper de Leucina/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Secas/prevenção & controle , Regulação da Expressão Gênica de Plantas/genética , Família Multigênica/genética , Plantas/genética
18.
Cells ; 10(8)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34440924

RESUMO

Glucocorticoids (GCs) are essential in regulating functions and homeostasis in many biological systems and are extensively used to treat a variety of conditions associated with immune/inflammatory processes. GCs are among the most powerful drugs for the treatment of autoimmune and inflammatory diseases, but their long-term usage is limited by severe adverse effects. For this reason, to envision new therapies devoid of typical GC side effects, research has focused on expanding the knowledge of cellular and molecular effects of GCs. GC-induced leucine zipper (GILZ) is a GC-target protein shown to mediate several actions of GCs, including inhibition of the NF-κB and MAPK pathways. GILZ expression is not restricted to immune cells, and it has been shown to play a regulatory role in many organs and tissues, including the cardiovascular system. Research on the role of GILZ on endothelial cells has demonstrated its ability to modulate the inflammatory cascade, resulting in a downregulation of cytokines, chemokines, and cellular adhesion molecules. GILZ also has the capacity to protect myocardial cells, as its deletion makes the heart, after a deleterious stimulus, more susceptible to apoptosis, immune cell infiltration, hypertrophy, and impaired function. Despite these advances, we have only just begun to appreciate the relevance of GILZ in cardiovascular homeostasis and dysfunction. This review summarizes the current understanding of the role of GILZ in modulating biological processes relevant to cardiovascular biology.


Assuntos
Sistema Cardiovascular/metabolismo , Glucocorticoides/metabolismo , Humanos , Zíper de Leucina/genética , Zíper de Leucina/fisiologia
19.
Front Immunol ; 12: 652709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211461

RESUMO

Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. We investigated the mechanism by which SMILE suppressed the development of inflammatory bowel disease (IBD) using a DSS-induced colitis mouse model and peripheral blood mononuclear cells (PBMCs) from patients with ulcerative colitis (UC). Metformin, an antidiabetic drug and an inducer of AMPK, upregulated the level of SMILE in human intestinal epithelial cells and the number of SMILE-expressing cells in colon tissues from DSS-induced colitis mice compared to control mice. Overexpression of SMILE using a DNA vector reduced the severity of DSS-induced colitis and colitis-associated intestinal fibrosis compared to mock vector. Furthermore, SMILE transgenic mice showed ameliorated DSS-induced colitis compared with wild-type mice. The mRNA levels of SMILE and Foxp3 were downregulated and SMILE expression was positively correlated with Foxp3 in PBMCs from patients with UC and an inflamed mucosa. Metformin increased the levels of SMILE, AMPK, and Foxp3 but decreased the number of interleukin (IL)-17-producing T cells among PBMCs from patients with UC. These data suggest that SMILE exerts a therapeutic effect on IBD by modulating IL-17 production.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Zíper de Leucina/genética , Metformina/farmacologia , Multimerização Proteica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica
20.
Methods Mol Biol ; 2318: 21-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019285

RESUMO

The C-terminal region of the c-MYC transcription factor consists of approximately 100 amino acids that in its native state does not adopt a stable structure. When this region binds to the obligatory partner MAX via a coupled folding-and-binding mechanism, it forms a basic-helix-loop-helix-leucine zipper (bHLHZip) heterodimeric complex. The C-terminal region of MYC is the target for numerous drug discovery programs for direct MYC inhibition via blocking the dimerization event and/or binding to DNA, and a proper understanding of the partially folded, dynamic nature of the heterodimeric complex is essential to these efforts. The bHLHZip motif also drives protein-protein interactions with cofactors that are crucial for both transcriptional repression and activation of MYC target genes. Targeting these interactions could potentially provide a means of developing alternative approaches to halt MYC functions; however, the molecular mechanism of these regulatory interactions is poorly understood. Herein we provide methods to produce high-quality human c-MYC C-terminal by itself and in complex MAX, and how to study them using Nuclear Magnetic Resonance spectroscopy and X-ray crystallography. Our protein expression and purification protocols have already been used to study interactions with cofactors.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/isolamento & purificação , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/isolamento & purificação , Sequência de Aminoácidos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sítios de Ligação , Cristalografia por Raios X/métodos , DNA/química , DNA/genética , Dimerização , Genes myc/genética , Genes myc/fisiologia , Sequências Hélice-Alça-Hélice/genética , Sequências Hélice-Alça-Hélice/fisiologia , Humanos , Zíper de Leucina/genética , Zíper de Leucina/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Domínios Proteicos/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...